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Image Retargetability

Fan Tang ', Weiming Dong
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Abstract—Real-world applications could benefit from the ability
to automatically retarget an image to different aspect ratios and
resolutions while preserving its visually and semantically important
content. However, not all images can be equally processed. This
study introduces the notion of image retargetability to describe
how well a particular image can be handled by content-aware
image retargeting. We propose to learn a deep convolutional neural
network to rank photo retargetability, in which the relative ranking
of photo retargetability is directly modeled in the loss function. Qur
model incorporates the joint learning of meaningful photographic
attributes and image content information, which can facilitate the
regularization of the complicated retargetability rating problem.
To train and analyze this model, we collect a dataset that contains
retargetability scores and meaningful image attributes assigned
by six expert raters. The experiments demonstrate that our
unified model can generate retargetability rankings that are highly
consistent with human labels. To further validate our model,
we show the applications of image retargetability in retargeting
method selection, retargeting method assessment and generating a
photo collage.

Index Terms—Image retargetability, visual attributes, multi-
task learning, deep convolutional neural network.
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1. INTRODUCTION

ONTENT-aware image retargeting (CAIR) addresses the
C increasing demand of display images on devices with vary-
ing resolutions and aspect ratios while preserving its visually
important content and avoiding observable artifacts [1]-[7]. Al-
though state-of-the-art image retargeting techniques can suc-
cessfully handle numerous images, whether a specific image can
be successfully retargeted beforehand remains unclear. CAIR
techniques typically expect that the input image contains a
mid-sized salient object and a relatively simple background,
for which the majority of information can be presented in a
small space. The retargeting results may present severe artifacts
if the input images contain rich contents or geometric structures
that may be damaged. Furthermore, not all CAIR methods work
equally well for the same input. The optimal approach which
considers quality and robustness depends on the input image
and target resolution. For example, warping-based retargeting
methods [4], [5], [8] are effective and popular, but tends to over-
stretch or oversqueeze some contents when salient shapes should
be preserved.

To address the problems of the CAIR method selection and
result evaluation, we introduce the notion of “image retargetabil-
ity” to quantitatively compute how well the image can be retar-
geted on the basis of its visual content. Fig. 1 shows the pre-
dicted retargetability scores of several input images and the cor-
responding results of the “best” retargeting method selected by
our system.

We are inspired by some recent studies on quantifying quali-
tative image properties, such as interestingness [9], memorabil-
ity [10], synthesizability [11], and mirrorability [12]. To com-
pute image retargetability, we adopt a data-driven methodology
and collected a dataset of 13,584 sample images from Internet
photos (Section III). For each image in the dataset, we apply
multiple retargeting methods and request six expert raters to la-
bel the quality of each retargeting result in one of the following
three levels: good, acceptable, and bad (see Fig. 5 for examples).
We also ask the raters to annotate a set of high-level visual at-
tributes for each sample image in the dataset, including repeating
patterns, specific geometric structures, perspective, fuzzy, text,
and shading contrast.

We propose to quantitatively measure and analyze image re-
targetability on the basis of the collected dataset with manual
annotations. We demonstrate that there is a strong correlation
between image retargetability and other visual attributes. We use
this observation as basis to leverage a deep convolutional neural
network (NN) and propose a multi-task learning approach by
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Fig. 1. Retargetability of images predicted by our system. The values are in [0, 1], in which a high value indicates that the image is easy to retarget. For each

group, left is the original image and right is the retargeted result generated by CAIR method suggested by our system.

jointly learning visual attributes from deep features and feature
sharing for retargetability prediction (Section IV).

We evaluate the effectiveness of our framework for image
retargetability prediction by comparing against a baseline ap-
proach in Section V. Given that each CAIR method exhibits its
own advantages and limitations, no single CAIR algorithm that
works better than other algorithms in all the cases has been pro-
duced. We demonstrate how to select the “best” CAIR method
using our system. We also show that image retargetability is use-
ful for retargeting method assessment and photo collage gener-
ation (Section VI).

In summary, our main contributions are as follows.

* We introduce image retargetability as a new quantitative

property for image analysis.

® We collect a large image dataset to learn deep features for

image retargetability prediction. The dataset and source
code will be released upon final publication.

® We adopt a deep NN and propose a novel multi-task learn-

ing architecture to compute the retargetability of a given
image.

® We demonstrate that image retargetability can facilitate

several applications for image analysis/processing, such
as retargeting method assessment/selection and generating
a photo collage.

II. RELATED WORK

Image retargeting algorithms: The concept of CAIR aims to
preserve the important content of an image after resizing. Crop-
ping has been widely used to eliminate unimportant information
from the image periphery or improve the overall composition
of an image [6], [13], [14]. However, cropping often destroys
object completeness and causes unexpected information losses.
Discrete methods remove or insert pixels or patches judiciously
to preserve content. Seam carving methods iteratively remove a
seam in the input image to preserve visually salient content [1],
[15]. Shift-map method [3] performs a discrete labeling over in-
dividual pixels and retargets an image by removing segments in

the net. These approaches are good at retargeting images with
rich texture content but may occasionally cause local discon-
tinuity artifacts. Continuous methods focus on preserving local
structure and often optimize a warping from the source size to the
target size, constrained on its important regions and permissible
deformation [8], [16]-[18]. Panozzo et al. [4] minimized warp-
ing energy in the space of axis-aligned deformations (AAD) to
avoid unnatural distortions. Kaufmann et al. [19] adopt a finite
element method to formulate image warping. Lin ef al. [5] pre-
sented a patch-based scheme with an extended significance mea-
surement to preserve the shapes of visually salient objects and
structural lines. Tan et al. [20] generated feature-preserving con-
straints in the space of AAD by calculating a feature salience map
to guide the warping process. These approaches can smoothly
preserve the image content geometric structure but may also per-
mit minimally important and unwanted regions to appear in the
retargeting result. Multi-operator methods [2], [21], [22] fuse
three condensation operators (i.e., seam caring, cropping, and
scaling) into a unified optimization framework. Different oper-
ators influence one another and are simultaneously optimized to
retarget images. Summarization-based methods measure patch
similarity and select patch arrangements that fit well together to
change image size [23]-[25].

Researchers recently adopted deep learning techniques to
solve CAIR and related tasks [26]-[29]. Guo et al. [30] cropped
aesthetically pleasing regions on the basis of a novel cascaded
cropping regression method. Song et al. [31] proposed a two-
module deep architecture to encode the human perception for
image retargeting task and perform a multi-operator-based photo
squarization solution. These deep learning-based approaches
are the extension of traditional cropping, warping, or multi-
operator-based methods. Section III-B provides the details of
the advantages and disadvantages of the different types of CAIR
methods.

Image retargeting evaluations: Rubinstein et al. [32] present
the first comprehensive perceptual study and analysis of image
retargeting, created the RetargetMe benchmark, and conducted
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a user study to compare the retargeted images generated by nu-
merous state-of-the-art methods. An overall ranking of the re-
targeting methods has been provided on the basis of user study.
Liu et al. [33] proposed an objective quality assessment metric
that simulates the human vision system to compare image qual-
ity with different retargeting methods. Their experiments also
suggest that no single method is absolutely superior to others in
all the cases. Ma et al. [34] built an image retargeting quality
data set to analyze different retargeting factors, including scales,
methods, and image content. Zhang et al. [35] analyzed three
determining factors for the human visual quality of experience,
namely, global structural distortion, local region distortion, and
loss of salient information. Fang et al. [36] generated a struc-
tural similarity map to evaluate if the structural information is
well preserved in the retargeted image. Hsu et al. [37] proposed
a novel full-reference objective metric for assessing the visual
quality of aretargeted image on the basis of perceptual geometric
distortion and information loss. Bare et al. [38] proposed a new
feature and predicted the retargeted image quality by training
an RBF NN. Wang et al. [39] analyzed human-scenery position
relationship, which can be used to evaluate content composi-
tion, in retargeted images. Zhang et al. [40] adopted a novel
aspect ratio similarity metric to measure the geometric change
of the images as proven by how the original image is retargeted.
Liang et al. [41] evaluated image retargeting quality through
multiple factors, including preservation of salient regions, sym-
metry, and global structure, influence of artifacts, and aesthetics.
Eye tracking data are also used to improve the performance of
the objective quality metrics for retargeted image [42]. Rawat
et al. [43] focused on the visual balance of social media images
and provide real-time feedback on the relative size of image
frame. Several studies [37], [38] have also learned to predict a
score to discover how well the retargeted images are to indi-
cate whether the quality of a specific retargeting result is good.
However, these studies evaluated the image retargeting quality
by comparing the original and retargeted images. By contrast,
the current study focuses on predicting the quality of retargeting
result from the input image itself, thereby possibly indicating if
an image can be well retargeted.

Image property analysis: Various semantic properties of im-
ages have been widely analyzed. Rosenholtz et al. [44] measured
the visual clutter of an image, which is useful for the retrieval
of visual content. Recently, unusual photographs are found to
be interesting [9], and images of indoor scenes with people are
found to be memorable, whereas scenic and outdoor scenes are
not [10]. Other qualitative image properties such as popular-
ity [45], colorfulness [46], and aesthetics [47] have been also
studied. Dai et al. [11] used the techniques of example-based
texture synthesis as bases to quantify texture synthesizability
as an image property, which can be learned and predicted. In
text-based image retrieval, image specificity [48] based on im-
age content and properties has been used to discriminate easily
describable images.

The current research defines image retargetability as a seman-
tic property to quantify the probability that an image can be well
retargeted. We show that this notion is closely related to deep
relative attributes [49].
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III. DATASET PREPARATION

This section introduces our data set preparation for image re-
targetability investigation. First, we collect a large set of images
and manually label each image with a few attributes on the basis
of visual content (Section III-A). Second, we apply four typical
CAIR methods to all the images in the dataset and manually
annotate the quality of each retargeting result (Section III-B).

A. Images and Attributes

Our framework is designed to measure image retargetability
on a wild spectrum of natural images. Accordingly, the dataset
should be considerable variability in terms of contents and com-
positions. Although the “RetargetMe” benchmark [32] has been
widely used in image retargeting works for quality assessment,
this dataset only contains 80 images, which are inadequate for
the reliable learning of image attributes. To learn retargetabil-
ity prediction, we prepare an image dataset and manually an-
notate the sample inputs in terms of retargetability. We collect
14,000 images from Flickr, Pinterest, 500px, and Pexels under
Creative Commons license by providing 26 keywords acquired
from 500px photo categories (see https://500px.com). The key-
words cover the most common categories, such as animals, food,
nature, sport, travel, still-life, fashion, and urban exploration. All
images are homogeneously scaled by truncating their long sides
to 500 pixels. Images smaller than this size are not used. We
remove some images that are of low quality or heavily water-
marked. Lastly, we add the “RetargetMe” images and ended up
with a data set of 13,584 images.

The CAIR methods work best on images with disposable con-
tent. These images typically include either smooth or some reg-
ularly textured areas, such as sky, water, or grass. Challenges
are present when the input image contained either rich semantic
contents, salient texts, or geometric structures that may be dam-
aged during retargeting. We use this observation and photogra-
phy theories [50] as bases to choose a set of attributes that can
be mapped to the several major retargeting objectives (preserv-
ing content, structure, and aesthetics and preventing artifacts)
and manually annotate collected images with these attributes.
The selected attributes are people and faces, lines and/or clear
boundaries, salient single object, salient multiple objects, diag-
onal composition, texture, repeating patterns, specific geomet-
ric structures, perspective, fuzzy, text, shading contrast, content
rich, and symmetry. Fig. 2 shows some examples in our data set
with the attributes assigned to each image. Fig. 3 shows the cor-
relation between image attributes. Apart from some attributes
with opposite meaning (e.g., a single object versus multiple ob-
jects), the majority of the numbers in Fig. 3 contain relatively
low absolute values, thereby demonstrating that most attributes
are uncorrelated to one another.

B. Retargeting Methods and Annotations

To evaluate the retargetability of the collected images in the
dataset, we select and implement the four most typical and com-
monly used CAIR methods, namely, multi-operators, inhomo-
geneous warping, shift-map, and cropping. We apply these four
methods to all the collected images in the dataset.
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Fig. 2. Example images in our dataset with manually annotated attributes.
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Fig. 3. Correlation among the visual attributes.

® Multi-operator method outperforms the majority of the
other approaches according to the comparative study [32].
A typical multi-operator method integrates seam carving,
homogeneous scaling, and cropping to resize an image
and can be considered a generalized version of seam carv-
ing. Our study adopts the fast multi-operator method [22],
which is sufficiently rapid for practical applications.

e [nhomogeneous warping-based method is known for its
real-time performance and local continuity preservation.
We use the AAD method [4], which has been recently ver-
ified to be one of the most effective warping methods. Other
state-of-the-art warping-based methods [5], [18], [19] can
also be used as the representative method, which does not
affect the effectiveness of our retargetability learning and
prediction framework.

e Shift-map-based method can selectively stitch some con-
tents together and often works well for input with salient
contents distributed in the different parts of the image. Our
study applies the original shift-map method [3] to the im-
ages in the data set.

® (Cropping-based CAIR algorithm is preferred in many cases
because this type of method does not introduce any distor-
tion in the retargeting results [32]. In particular, we use the
SOAT,; method [6].

Discussions: We did not add summarization-based retargeting

methods, such as BDS [23] and PM [24], during data collection
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Fig. 4.

Example of the importance map used in our framework.

for two reasons. This method typically requires several minutes
to generate a good result, while the results of BDS/PM often
present a structural mismatch of spatial content [25]. These two
artifacts limit their practical use in many applications, particu-
larly for some systems that require real-time performance. We
did not integrate some other CAIR methods that focus on images
containing specific contents, such as symmetry structure [51],
semantically-rich information [7], and textures [25], because our
goal was to evaluate image retargetability in a generic manner.

Although the selected methods are not recently proposed, they
represent the mainstream CAIR framework. The recently pro-
posed deep learning-based methods are an extension of these
methods. We choose these classic approaches because they have
been widely tested and proven to be stable and effective.

Given that the majority of the CAIR methods are carefully de-
signed for one-dimensional retargeting, we restrict the change
to either the width or height of an image. For each image in the
data set, we resized the long dimension to 50% using the four
CAIR methods described in Section III-B, all with fixed param-
eters. In particular, we choose to retarget the images to half their
size, which is similar to the methods performed in previous re-
search on CAIR, because the majority of the images can be han-
dled well for small-sized changes, while causing poor results for
large changes. We further guided the CAIR methods by comput-
ing an importance map for each image. We adopt state-of-the-art
saliency detection approaches [52], face segmentation [53] and
body detector [54] to generate the importance map. Note that
the output of a body detector is the bounding box of the body
region. We use GrabCut [55] to generate the importance map
when a body is detected. We use the average of these maps as
our importance map (see Fig. 4).

We ask six expert raters to independently evaluate the quality
of all the retargeted images and annotate the result as one of
the following three levels (see Fig. 5): good, acceptable, and
poor, which correspond to scores of 1, 0.5 and, 0, respectively.
Thereafter, we compute the average score from the six raters as
the evaluation of each retargeting result in the dataset.

Consistency Analysis of Annotations: We measure the inter-
rater consistency to verify the objectivity of the annotation data.
For each image in our data set, we adopt Kendall’s coefficient of
concordance (Kendall’s W) [56] to study the rating consistency
among different subjects. Kendall’s W is a non-parametric sta-
tistical measure that ranges from O (no consistency) to 1 (com-
pletely consistent). The overall average Kendall’s W is 0.562
with a standard deviation of 0.0192. Moreover, raters can obtain
significant concordance on 87.69% images at the 0.05 signifi-
cance level.
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Image Retargetability

Introduction

Five images are shown below. One of them(the biggest one) is the image in original size we collect from web, the rest are
thumbnails of the original. The four thumbnails are from diffenert algorithms, and now we invite you to rate each of these four
thumbnails, according to how you think the small image is suitable to serve as a thumbnail of the original image.

Origin

Thumbnails

Fig. 5. Our web interface for data annotation. Expects were invited to rate
each of the retargeted images on the basis of their own opinion. No further
information on the definition of retargetability is released.

IV. MODELING RETARGETABILITY

First, we use our dataset as basis to analyze the correlation
between image attributes and retargetability (Section IV-A). Sec-
ond, we introduce our framework to employ deep learning and
multi-task learning to learn and predict image retargetability
(Section IV-B).

A. Measuring Retargetability

For each sample image in the dataset, we define its retar-
getability as the max score of the four average user-rated scores
(each image possesses four retargeted outputs, while each output
image contains six user-rated scores; see Section III).

Given this quantitative measurement of retargetability, we can
analyze the relationship between different visual attributes and
the image retargetability using Ridit analysis [57], which is com-
monly used in the study of ordered categorical data. In Fig. 7,
the dashed horizontal line is the reference unit 0.5 and the devia-
tion from reference unit represents the influence of the attribute.
Evidently, some visual attributes are closely related to image
retargetability. For example, the groups of lines, text, symme-
try, geometry, and patterns are under the dashed line, thereby
indicating that images with these attributes are likely to exhibit
low retargetability scores or equivalently, worse retargeting re-
sults annotated by our raters. Images with content rich, diagonal
structure, and texture often correspond to high scores. We use
this key observation as basis to propose to learn and predict
retargetability on the basis of visual attributes.

B. Learning and Predicting Retargetability

Although the retargetability of an image is calculated by
the ratings of the retargeted images, retargetability itself is a
high-level property of such an image. Thus, we aim to learn
retargetability directly from the source image rather than the
retargeted images by utilizing the pre-selected attributes to
regularize a pair-wise retargetability ranking training. Fig. 6
shows the overall structure of our model, including a three-
level feature representation mechanism and two types of loss
functions that correspond to binary visual features or relative
retargetability. First, we use the output from deep convolutional
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network as the low-level representation of the image. Second, we
learn attribute-specific features for each attribute and eventually
use this information to learn retargetability. To boost training
phase, we simultaneously learn the visual attribute features with
retargetability.

In the following section, we demonstrate the multi-task learn-
ing approach by jointly learning visual attributes from deep fea-
tures and feature sharing for retargetability.

1) Deep Features: We use a VGG-19 [58] style model pre-
trained on ImageNet [59] for image classification to extract deep
representations for input images. The network consists of a stack
of convolution layers with pooling and ReL U, followed by three
fully-connected layers and softmax with loss. After isotropically
re-scaling the input image’s short side to 224, we densely crop
the image to obtain 2242 sub-images and feed the square sub-
images to the convolutional network as [58]. The need to re-scale
or crop the image to the same size for the learning appears to
defeat the purpose of studying the effect of changing the aspect
ratio of animage. However, compared with image retargetability,
other visual attributes are more robust to the size change of the
input image. That is, if an image contains a face, then the face
will continue to exist even if the aspect ratio of the image has
been changed. We denote F'm; as the last convolutional layer’s
output of 74, sub-image. The low-level deep feature of an input
is as follows:

251 Fmi
Fm ===
m K 5

where K is the number of sub-images and is set to 10 in our
implementation. We use the output of the convolution layers in-
stead of the fully connected layers to acquire the low-level image
representation. Hence, the output is not considerably related to
the pre-trained classification task.

2) Learning Retargetability: We attempt to learn the middle-
level features for visual attributes and share these features for
retargetability to boost learning performance. In our task, all
visual attributes are labeled as 1 or —1, in which binary at-
tributes are often learned using the classification method. We
formulate retargetability as a type of relative attribute that is
powerful in uniquely identifying an image and offer a seman-
tically meaningful method to describe and compare images in
the wild [49]. We design different losses for different types of
attributes. Given a low-level deep feature space together with
annotated attributes and retargetability-labeled image data, we
learn a shared attribute-level feature representation by optimiz-
ing a joint loss function that favors a pair-wise relative loss and
squared hinge loss function with sparsity patterns across binary
attributes.

Binary attribute features learning: Given M semantic at-
tributes, the goal is to learn M binary classifiers jointly. Each
binary classifier is a four-layer NN with one input layer and
two hidden layers of 4096 and 1000 nodes, respectively, and
a one-node output layer, followed by squared hinge loss func-
tion. Inspired by [60], [61], we utilize [5 ;-norm minimization to
boost feature sharing among the different attributes. Multi-task
feature learning via [ ;-norm regularization has been studied in
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Deep Convolution Neural Network Pre-trained on ImageNet
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Fig. 6.

Overall structure of our method. A siamese network with a three-level feature representation mechanism and two types of loss function corresponding to

binary visual features or relative retargetability was adopted for retargetability learning.
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Fig. 7. Ridit scores with 95% confidence interval for visual attributes.

many approaches and encourages multiple predictors from dif-
ferent tasks to share similar parameter sparsity patterns. Given
an image ¢, with a M -dimension label vector L, element that is
only 1 or —1, we proposed the following equation by supposing
that the parameters between the two hidden layers for the ks,
attribute learning MLP server as wy:

M
) 1 ; 1
10SSpinary (1) = ,;_1 §[max(0, 1— L - i,c)]2 + EaH Willa1,

where W = [wy] and L, is the output of the k;;, MLP for image
iand [|[Wll2,1 = > ||ws|| is the I3 1-norm of the matrix V. We
apply l» 1-norm to W, thereby indicating that the outputs of the
first hidden layer in different MLPs are relatively independent
(see “attribute specific feature” in Fig. 6). By contrast, the out-
puts of the last hidden layer are boosted by multi-task feature
learning technique (see “shared feature” in Fig. 6).

Relative retargetability learning: In general, the goal of
relative attribute learning is to learn ranking functions for
labeled image pairs. The existing relative attribute learning ap-
proaches learn linear functions to map hand-crafted features to
relative scores. Inspired by [62], we collect features learned for
each visual attribute as mid-level visual features and use these
attribute-related features to train retargetability by a three-layer

NN with 1000 hidden nodes. All the shared features are concate-
nated as the input of the three-layer NN. We define the relative
loss as the sum of the contrastive and similar constraints. Given
a pair of images 7 and j (i # j), with retargetability y; and y;
predicted as y; and y;, the loss for the image pair (7, j) is as
follows:

lossrelative(iaj) = I(Zaj) ! lp(7’7j) + (1 - I(Zvj)) : lq(iaj)a

where

.. 1, y; >y,
rid) = {12 Y

lp(luj) = maX(O,T - (y;k - y;))7

la(i,7) = 500 — )",
where I(i,j) is a binary function that indicates whether im-
ages ¢ and j exhibit similar retargetability, [,,(¢, ) denotes the
contrastive constraint for ordered image pair (7, j), and [,(i, 7)
donates similar constraint for unordered pairs. The parameter
T controls the relative margin among the attribute values when
I1(i,5) = 1.

Formulations and implementations: Given the pair-wise rel-
ative loss, we use a two-channel Siamese network as the overall
structure [63]. Each channel of the network predicts 14 visual
attributes and retargetability together with the attribute-specific
features. The hinge-based binary loss is calculated among each
group of the M attributes while relative loss is computed by
two predicted retargetability. The goal of the entire two-channel
network is as follows:

i#]

m@in J@ = Z lossbinary (7/) + lossbinary (])
i,j
+ 108Srelative (4, §) + Bl1O|| F,

where © stands for all the parameters to be optimized and ||©||
is a regression term to penalize overfitting. Table I summarizes
the configuration of the proposed method. Note that the major-
ity of the parameters come from the MLPs for binary attribute
learning. Due to these MLPs are trained in a multi-task learning
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TABLE I
NET CONFIGURATION FOR PROPOSED ARCHITECTURE
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TABLE II
CONFIGURATIONS FOR CONTRAST METHODS

Method | Dense crop | Binary attribute | [2 1 loss | Relative loss
Net_ - - - -
Net+ / - - \/
Structure Params Net, V4 v B Ve
224%224 Input RGB Image [n, k, h, w]
conv3—64%2 [64, 3,3, 3], [64, 64, 3, 3] Net& - v v v
T AR Neta v v v -
pooling -
conv3-128%2 [128, 64,3, 3], (128, 125,3, 3] Ours v v v v
pooling -
CNN part COHV31256*4 [256, 128, 3, 3], 5256, 256, 3, 3]1%3 TABLE III
D00 1Ng . RMSE FOR DIFFERENT NET STRUCTURES
conv3-512%4 [512, 256, 3, 3], [512, 512, 3, 3]*3
pooling
conv3-512%4 [512,512, 3, 3] Method Net_  Nety  Nety Netg, Neta | Ours
pooling - RMSE 0.334 0.296 0.248 0.246  0.228 | 0.209
4096 4096 ~1028M
1000 1000 ~41M
MLP part . . .
1000 Total=1180M o Net_. A straightforward end-to-end VGG19, which is
Binary Arrtibute * 10 | Retarget- L N
ability fine-tuned on the training data to directly solve the regres-

manner, the parameters are learned “separately”. Given N im-
ages for training, we could obtain 14 x N independent labels for
training these MLPs separately. Each attribute is trained on one
single small model. Different attributes are further boosted by
feature sharing technique. For calculating the relative loss, we
randomly draw a pair of samples from these [V images. Totally
we could draw C%; sample pairs for training. These advantages
can possibly train the big network on the proposed data set. We
adopt mini-batch stochastic gradient descent with a batch-size
of 64 and an initial learning rate of 0.01. For the full connected
layers, we adopt ReLLU as the activation function. In the training
stage, we randomly drop out 30% parameters to push the net-
work to learn additional general features. In the test stage, we
use one way of the siamese network to generate the outputs and
truncate the predicted value into [0, 1].

V. EVALUATIONS

This section presents the evaluation and analytical results of
the image retargetability prediction. All experiments are per-
formed on a PC equipped with 3.6 GHZ Intel Core i7 and
Nvidia Geforce GTX 1080Ti. The implementation is based
on Caffe2. The proposed network is trained for approximately
6 hours. Given the densely cropping operation, the testing speed
is approximately 0.3 fps, which is slower than the current state-
of-the-art CAIR method. Song et al. [31] report that their model
takes about 0.5 s to process 100 images. However, the current
study did not focus on the testing speed. Accordingly, the speed
can be highly improved by taking the model quantization or
distillation techniques as [31]. We randomly select half of the
annotated images to train the retargetability predictor and use
the remainder for testing. This process is performed five times
and the average results are as follows.

A. Experimental Settings

Given that our research is the first study of image retargetabil-
ity, finding direct comparisons with any previous study is dif-
ficult. To demonstrate the effectiveness of our framework, we
compare our framework with the following CNN structures:

sion problem.

e Net,. A siamese network without binary attribute loss.
All the other configurations are the same as the proposed
approach, including the relative loss and low level feature
extraction.

® Net,. A siamese network without /> ; normalization in
binary attribute loss. In the proposed method, we utilize
l3,1 to boost the feature sharing among different binary
attributes. Net is tested to evaluate the performance of
l,1 normalization.

® Netgamp;. A siamese network without dense cropping in
low level feature extraction. We re-scale the input image’s
short side to 224 and cropped K sub-images to calculate
low-level deep representation. By contrast, N etgqmyp; di-
rectly re-scales the input image to 2242,

® Neta. A one-way network without relative loss. All the
other configurations are the same as the proposed approach,
including the binary attribute loss and low-level feature
extraction.

Table IT shows the details of these configurations.

B. Qualitative Analysis

Figs. 8 and 9 show the predicted retargetability and corre-
sponding retargeted output, respectively, for several input im-
ages. The quality of the retargeted images is consistent with the
predicted retargetability score. The results indicate that images
with large homogeneous regions, blurry background, and sin-
gle object lead to increased scores. By contrast, low scores are
caused by several factors, including salient lines, clear bound-
aries, geometric structures, and symmetry.

C. Quantitative Analysis

We use root-mean-square error (RMSE) as measurement to
evaluate the accuracy of our retargetability prediction approach.
Assuming N images in the testing set are present, the overall
RMSE = /4 >\ (y — y*)2.

Table I1I shows the results. Accordingly, provide the following
observation.
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Groundtruth: 0.00, [lines, texture, symmetry] Prediction: 0.18, [lines, texture, symmetry, geometric structures]

3

AAD

Original image

Fig. 8.

Groundtruth: 0.92, [single object, texture] Prediction: 0.95 [single object, textur
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2% /
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Shift-Map FMO

Cropping

Examples for retargetability prediction, visual attributes prediction, and method selection. In each example, the input image and the results of the four

CAIR methods are shown on the left and right respectively. The visual attribute is predicted by the output of MLP for binary attribute learning: if Lj > 0.5, then
the image is labeled as the k;, attribute. The results of the predicted best method are highlighted with red dash lines.

® As abaseline approach, Net_ reported the largest RMSE,
thereby indicating that the proposed image property and re-
targetability can not be well-learned using traditional deep
convolutional network.

® The RMSE improvement between Net . and Net, demon-
strates the model benefits from the representative abil-
ity of the extracted features by joint learning with binary
attributes.

e Dense cropping in low level feature extraction promotes
the performance of the feature learning process, which
can be proven by the comparisons between Net_-Net,
Netgamp:-Ours. Such observations confirm that retar-
getability is a property dealing with the ability to be re-
sized, retargetable operations to the original images may
cause uncertain results. In our pipeline, retargetability is
learned on features related to visual attributes which are
considerably insensitive to the input size changing.

® The proposed model reported the lowest RMSE by embed-
ding all the losses thereby confirming that sharing visual
knowledge with high-level image attributes in the predic-
tive model is a compelling method for boosting the learning

process. Compared with dense cropping or binary attribute,
the improvement using relative loss is not definite because
the proposed relative loss tends to rank the images accord-
ing to their retargetability. In training phase, our model
is more likely to “compare” images with a pair-wise loss
rather than learning absolute scores.

D. Discussion of Definition

In building the data set, we use the max rating (MAX-De)
of the four methods from the six raters as the measurement of
image retargetability. One alternative method is to use the mean
value, MEAN-De. We trained the proposed siamese network
together with Net_ under the definition of MEAN-De. RMSE
of MEAN-De is as follows: ours = 0.27 and Net_ = 0.42. We
label the testing samples as 1 or —1 according to its ground truth
retargetability: 1 if the score is above than a threshold o, and
—1 otherwise. Thereafter, the regression task can be evaluated
as a binary classification task. In Fig. 10, we plot the receiver
operating characteristic curve and report the area under curve
(AUC) value by setting o to 0.95 and 0.7, respectively. Due
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(a) Original Image (Retargetability = 0.86)

[people, texture, fuzzy, multiple objects]

(b) Original Image (Retargetability = 0.54)
[multiple objects, texture, fuzzy]

(c) Original Image (Retargetability = 0.16)
[people, multiple objects, symmetry, content rich, lines]

Fig. 9.

-~ Ours(095),AUC=0979 |} i .
—  Ours(0.70), AUC=0.937 B —
Net_(0.95), AUC=0.615
Net_(0.70), AUC=0.598

Ours(0.95), AUC=0.862
Ours(0.70), AUC=0.811
Net_(0.95), AUC=0.673
Net_(0.70), AUC=0.646

(a) MEAN-De (b) MAX-De

Fig. 10. Comparison of the retargetability prediction accuracy between our
method and the baseline approach.

to the plot of ROC curve is based on the prediction of each test
samples, we could not repeat this result by randomly splitting the
data set five times. For definition discussion, we randomly select
2000 testing samples from one of the five testing processes.
Although the AUC value of MEAN-De is higher than that of
MAX-De, RMSE of MAX-De is lower than that of MEAN-De.
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Shift-Map Cropping

Shift-Map Cropping

Images with different retargetability scores and the corresponding results from four selected CAIR methods. (b) and (c) are more reliable for assessing
new retargeting methods for these images are difficult for existing CAIR methods.
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Fig. 11 reports the results of the binary visual attribute learning.
Additional discussions about the definition are provided in the
supplemental materials.
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(a) MEAN_DE (b) MAX_DE

Fig. 11.  Accuracy rate for attribute prediction.

VI. APPLICATIONS

This section shows several applications of the proposed
method and the dataset, including retargeting method selection,
retargeting method assessment, and generating photo collage.
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(a) Images with low or moderate retargetability scores, which means that most or all existing retargeting method cannot generate good results for them.

0.57 0.13

0.98

(b) Images with high retargetability scores, which means that most or all existing retargeting method can generate good results for them.

Fig. 12.

A. Joint Representations for Retargeting Tasks

This study proposes a unified framework for joint learning vi-
sual attributes and image retargetability. Traditional CAIR (as-
sessment) works highly depend on hand-crafted features. How-
ever, image retargetability is based on the features learned by
a proposed end-to-end siamese network. The outputs of the
last hidden full connected layer in the retargetability branch
embed the image visual attributes and features related to the
CAIR tasks. These joint representations offer insight into the
possible connections between CAIR research and deep learning
approaches.

‘We adopt the learned image representations for another CAIR
task: retargeting method selection, thereby suggesting the “best”
retargeting method for a given image. First, we collect images
that have either “good” or “acceptable” retargeting results in
the training set and record the “best” method(s) of each image
based on manually annotations (Section ITI-B). Second, we train
the SVM classifier [64] for each CAIR method to learn whether
an image can be well retargeted by the method. The inputs of
these classifiers are the learned representations by our approach.
During testing, the method with the highest predicted value are
suggested as the “best” retargeting method for a given image.
The average precision of the “best” retargeting method classi-
fication task is 82.12% on the testing set. Fig. 8 shows three
such examples, in which the results of the suggested methods
and results of other methods are compared. We conduct a user
study to evaluate the perceived quality from an observer’s per-
spective. In accordance with the experimental setting by [32],
we adopt the paired comparisons technique, in which the par-
ticipants are shown the original image and two retargeted im-
ages side by side. One of retargeted images is the “best” re-
sult predicted by our classifiers and the other is randomly cho-
sen from the four retargeted results. The subjects are asked to
compare the two results and choose the one they like better. A
third option called “comparable” is offered when participants
find no marked difference between the two results. A total of
300 images from the testing set are selected for the user study.

Images with different retargetability scores. The images in the first row are reliable for assessing new retargeting method.

TABLE IV
STATISTICS FOR USER STUDY

Option Adaptive Random Comparable| Vigilance
Selection Selection

Counts 13,164 3,110 4,786 2,340

% 56.26% 13.29% 20.45% 10.00%

During the survey, we set up a vigilance comparison every 10
tests, in which the two retargeted images are the same. The
results are discarded if one subject fails 50% of the vigilance
comparisons. The vigilance comparisons ensure that workers
are focusing, thereby leading to high-quality results. A total
of 82 participants (age range of 20-45) from different back-
grounds are involved. Among which, 95.12% results are valid
and we obtain 23,400 votes. Table IV shows the statistics. The
ratio of the participants’ selection between “adaptive selection”
and “random selection” was 56.26% : 13.29% ~ 4.23, which
is consistent with that of the quantitative analysis (82.12% :
17.88% =~ 4.59). The quantitative analysis and user study show
that “adaptive selection” is superior to random guessing. This
finding is due to the fact that all the CAIR methods exhibit
their own philosophies and each one worked better than the
others for some images. This result necessitates an adaptive
selection for the “best” retargeting method for a given image
example.

B. Retargeting Method Assessment

Although the CAIR methods have recently drawn consider-
able attention, the most popular assessment benchmark, namely,
“RetargetMe” [32], was introduced approximately 10 years
ago. The annotated dataset is relatively small and the current
state-of-the-art CAIR methods report near-perfect results on this
dataset. The current study offers a relatively large image dataset
together with retargeting annotations, which can be used to aug-
ment other datasets, such as “RetargetMe” [32]. With the help
of retargetability, people can easily collect a suitable testing set,
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0.54
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0.74

(a) Input photos with various retargetability from low to high

(b) Our photo collage result by considering retargetability

Fig. 13.

(c) Photo collage result without considering retargetability

Example of photo collage generation. We generated photo collage by using retargetability to guide the placement of photos. Our result preserved more

salient content and presentd less retargeting artifact compared with the result without considering retargetability.

which contains a wide range of images with different retargeting
difficulties, to help the assessment of retargeting methods. This
scheme has also been used in image retrieval method evaluation
by organizing the evaluation set to three different levels of dif-
ficulties [65]. To evaluate if a new proposed CAIR method is
effective, the new method must be tested on images which are
difficult to existing methods. Therefore, during assessment, we
can just use images with low or moderate retargetability scores,
such as the images in Figs. 9(b), 9(c) and 12(a). People can use
retargetability to filter some examples, which can be well retar-
geted by exiting methods such as the image in Figs. 9(a) and
12(b). Through our experiments, we find that the images with
retargetability arranging between (0.0, 0.75] are reliable for the
new CAIR method assessment.

C. Photo Collage Generation

Photo collage is often created by placing multiple photo im-
ages on a canvas of limited size. The input images can be fitted
on the canvas by retargeting them at the risk of losing impor-
tant visual information and making the collage dull. Therefore,
optimally selecting image examples for different sizes of can-
vas regions is important because any input image cannot merely
be well retargeted in a given scale. Given the notion of image

Fig. 14. Retargeting along different dimensions. The input image is shown on
the left, the retargeting results along the long and short dimension using the four
selected CAIR methods are shown in the middle and right respectively.

retargetability, automatic photo collage can be reliable We
present an example of using image retargetability to guide the
generation of photo collage (see Fig. 13). The origin photos with
varying retargetability are shown in Fig. 13(a). With the help of
retargetability, the collage can be created in a simple but effective
manner. We first sort all the images based on their retargetabil-
ity and place the images thereafter into the canvas in increasing
retargetability order. Images with relatively low retargetability
are preferentially placed into regions where the aspect ratio can
be retained to the maximum extent. Fig. 13(b) shows the result
of our collage generation using this strategy. Without consider-
ing retargetability, the collage may result in Fig. 13(c), which
causes severe content loss or boundary discontinuity artifacts
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®) 75%

(a) Original Image (©) 50%  (d) 25%

Fig. 15. Retarget one image to different scales. Targeting scale affects quality.

to the photos (see the images in the left-top and right-bottom
corners of Fig. 13(c)). We observe that considering retargetabil-
ity can preserve salient content and present less unnatural retar-
geting artifact.

VII. CONCLUSION AND FUTURE WORK

This research presents retargetability as a novel image prop-
erty and develops a computational predictor on the basis of
multi-task learning. We construct a large image data set and an-
notate the retargetability of each image according to the quality
of its retargeted results. We propose a siamese network struc-
ture that jointly learns attribute features and the relative retar-
getability. Our experiments show that image retargetability can
be learned and predicted computationally and can be used to
adaptively select a retargeting method for an image, find feasible
image samples for retargeting method evaluation, and optimize
collage layout for graphic design.

Our experiments only consider the retargetability of an im-
age in one dimension (i.e., long side), thereby indicating the
we restrict the change to either the width or height of the im-
age. However, the retargetability of an image on these two
dimensions may not consistently be similar. Fig. 14 shows
that when we retarget the long side, the resulting images may
not be as satisfactory as retargeting the short side. Therefore,
we eventually plan to investigate the computation of image
retargetability in both dimensions. Another limitation of our
method is that we only retargeted source images to a fixed
scale (50%), but the retargetability of an image may vary with
the changing of target scale. Fig. 15 shows that we retarget
one image to 75%, 50% and 25% and we could see that the
quality of the retargeting results is related to the targeting
scale.

We can augment the resulting images and annotate them to
analyze the relationship between retargetability and target size
in the future. Furthermore, we will attempt to generalize retar-
getability for analysis and processing of video data.
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